

Автоматическая система резервного питания ASCO

Life Is On

Schneider Belectric

Предложение оборудования ASCO

31 октября 2017 года ASCO Power Technologies была приобретена Schneider Electric

Устройства Автоматического Ввода Резерва (ABP)

Системы синхронизации и управления параллельной устройства работой ДГУ Защиты от

Импульсных

Перенапряжений (УЗИП)

Нагрузочные станции

Действующие стандарты - ДСТУ EN 60947. Устройства комплектные распределительные низковольтные :

Часть 2. - ДСТУ EN 60947-2: 2015. Автоматические выключатели.

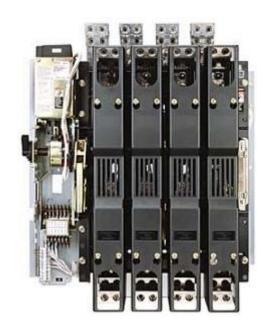
Часть 3. - ДСТУ EN 60947-3: 2015. Выключатели, разъединители, выключатели, выключатели-разъединители и комбинации их с предохранителями

Часть 4. - ДСТУ EN 60947-4-1: 2014. Электромагнитные контакторы и пускатели электродвигателей

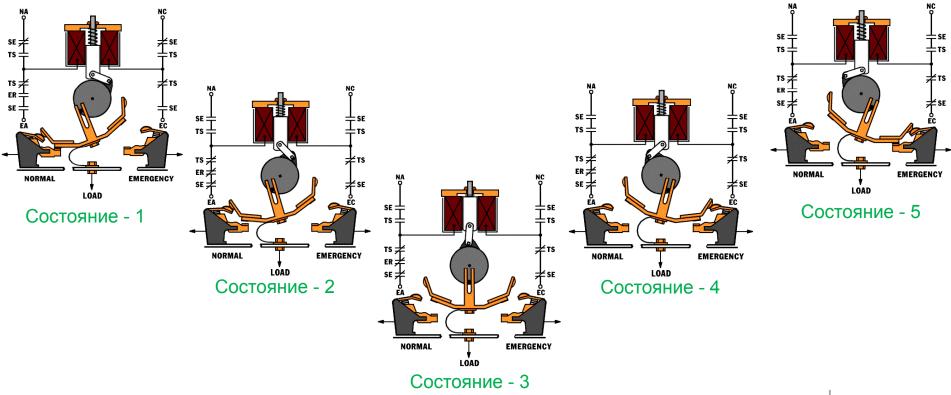
Часть 6. - ДСТУ EN 60947-6-1: 2015 Многофункциональное оборудование. Переключающее коммутационное оборудование. Раздел 1 – Аппаратура коммутационная автоматического переключения

Настоящий стандарт распространяется на коммутационную аппаратуру переключения (КАП), предназначенную для силовых систем с отключением подачи питания к нагрузке во время переключения, номинальное напряжение которых не превышает 1000 В переменного или 1500 В постоянного тока.

КАП (transfer switching equipment TSE): Аппаратура, состоящая из одного или нескольких коммутационных аппаратов, предназначенных для переключения цепей нагрузки от одного источника к другому.


АВР ASCO сертифицирован в соответствии с ДСТУ EN 60947-6-1

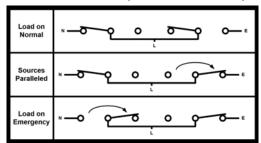
Исполнительный механизм – Электромеханический переключатель.


30A ... 4000A

Электромеханический переключатель ASCO предназначен для:

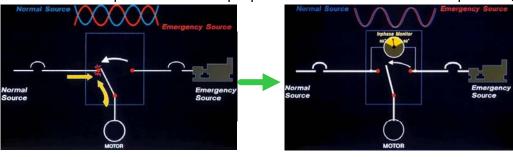
- Коммутации между двумя источниками (основной-резервный)
- Коммутация как однофазной, так и трехфазной нагрузки
- Для переключения фаз и нейтрали
- Возможность подключения вводов и отходящей линии кабелем и шинами
- Автоматическое режим/Ручное переключение (байпас)
- Автоматический пуск ДГУ (сигнал пуска резервного источника)
- Время переключения от 20 до 200мс

Принцип работы электромеханического переключателя.



Варианты коммутации

Конструкция электромеханического переключателя позволяет реализовывать несколько вариантов переключений:


- ОТКРЫТОЕ Нагрузка обесточивается на время коммутации
- С ЗАДЕРЖКОЙ Переключение вводов осуществляется с выдержкой времени
- ЗАКРЫТОЕ Переключение без разрыва питания нагрузки

БЕЗ разрыва цепи (если оба источника работают в оптимальном режиме)

- Время параллельной работы источников ≤100 мс
- Параллельная работа возможна только между синхронизированными источниками
- Пассивная синхронизация (АВР не отправляет управляющие сигналы к генератору)

• "МЯГКОЕ" - Переключение без разрыва питания + активная синхронизация

Условия синхронизации:

 $\Delta U \approx \pm 5\%$; $\Delta f \approx \pm 0.2$ Γμ; $\Delta \phi \approx \pm 5^{\circ}$

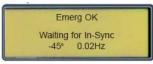
- Позволяет уменьшить пусковые токи и исключить неприятности, связанные с запуском двигателей при тестировании и восстановлении сети
- Исключает необходимость перевода нагрузки в нейтральное (отключенное) положение на длительное время
- Стандартная функция для всех серий АВР

• С ИСПОЛЬЗОВАНИЕМ БАЙПАСА - Ручное переключение в обход АВР в случае его неисправности

Устройства Автоматического Ввода Резерва (ABP) от ASCO by Schneider Electric Варианты коммутации

ABP ASCO с байпасом - это 2 идентичных электромеханических переключателя: один – осуществляет автоматическое переключение (управление контроллером), второй – только ручное переключение

Применяется для приложений, которые не предусматривают отключение нагрузки на время проведения сервисных работ или замены ABP.



Функции контроллера АВР

Состояние системы Основной и Резервный ввод

Параметры вводов

Normal	Source
Vab=480V	ABC
Vbc=480V	Vunbal=1%
Vca=480V	60.0Hz

Normal OK TD.Engine.Cooldown:

Параметры переключения

Norm	al Voltage
Dropout	85%.408V
Pickup	90%.432V
O.V. Trip	110%.528V

Выдержки времени

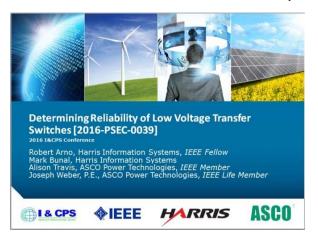
Переключение источников приоритетной нагрузки

P1	Engine.Exerciser
Enable:Ye	esWLoad:Yes
Start:19h30.	ALL MON
Run.Time:	2h15min

Отключение не

Статистика АВР

ATS Statistics ATS Total Xfers: 46 SRC Fail Tot Xfers: 20 Days Energized: 36.5


Опции к АВР

- Коммуникационный модуль для дистанционного мониторинга / управления (ModBus, SNMP);
- Реле попеременного включения ДГУ для выравнивания показателя времени работы (моточасы);
- Реле изменения приоритета вводов;
- Реле блокировки автоматического переключения на Резервный / Основной Ввод;
- Реле селективного отключение нагрузки;

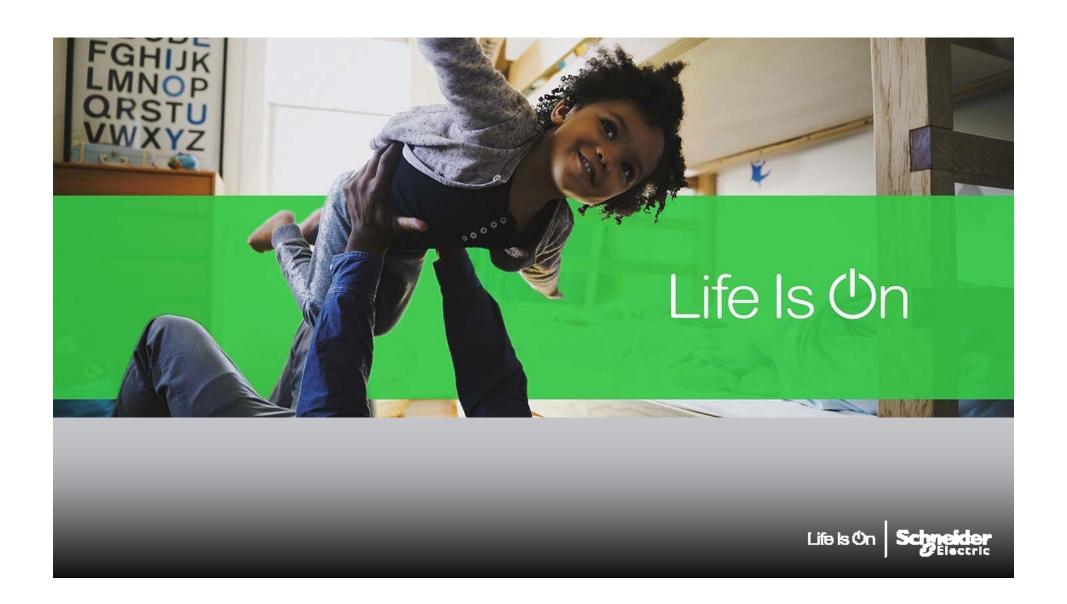
Pecypc работы ABP ASCO - Надёжность

Исследование в независимых организациях.

	GOLD BOOK	THIS STUDY
MTBF	171,197	1,412,450
Failures/Year	0.05117	0.006
Availability	99.997605%	99.9997998%
Annual Downtime	15minutes, 46 seconds	63 seconds

Анализ данных по эксплуатации АВР за последние 10 лет:

- > 200 миллионов операций ABP на объектах заказчиков
- Усредненное значение MTBF = 1.4 миллионов часов или ≈159 лет (методом распределения Вейбулла)
- Доступность устройств 99, 9997998%



Вопросы?

Спасибо за внимание

Life Is On Schneider

